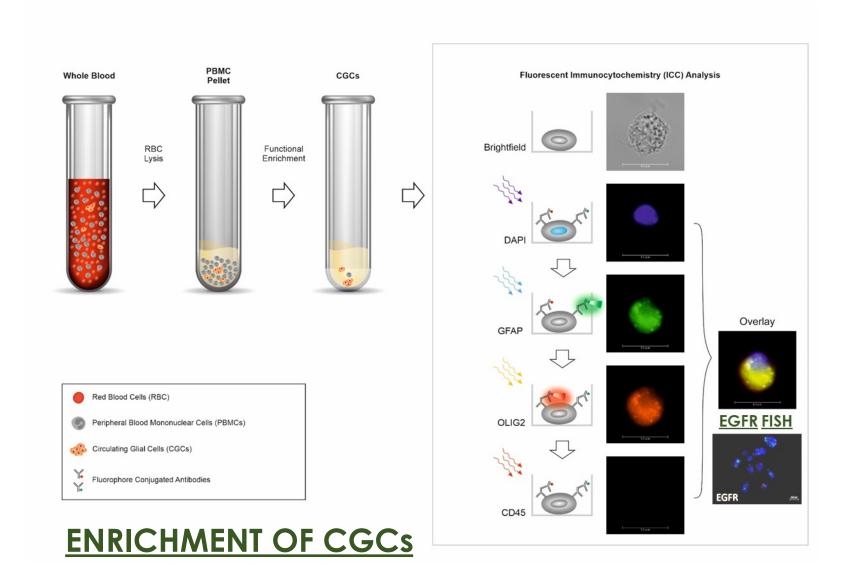
Selective Phenotypic and Genotypic Evaluation of Circulating Glial Cells for Improved Diagnosis of Glial Malignancies FPN:1229P

<u>S. Limaye¹</u>, F. Massoudi², N. Rohatgi³, D. Akolkar⁴, R. Datar⁴, T. Crook⁵, S. Schuster⁶, V. Datta⁴, P. Shejwalkar⁴, S. Patel⁴, K. O'Neill⁷, D. S. Patil⁴, N. Syed⁸

¹Medical Oncology, Sir H. N. Reliance Foundation Hospital, Mumbai, India, ⁴Molecular Oncology, Datar India, ⁴Molecular Oncology, Dat Cancer Genetics, Nashik, India, ⁵Oncology department, Cromwell Hospital, London, UK, ⁶Molecular Oncology, Datar Cancer Genetics Europe GmbH, Eckersdorf, Germany, ⁷Neurosurgery, Charing Cross Hospital – Imperial College Healthcare NHS Trust, London, UK, ⁸Brain Sciences, Imperial College London-Hammersmith Campus, London, UK

INTRODUCTION

- \succ The diagnosis of glial malignancies (GLI-M) in individuals presenting with radiologically intracranial space-occupying evident (ICSOL) lesions is based on histopathological examination (HPE) of tumor tissue obtained via surgical resection or via a biopsy in cases where the tumor cannot be surgically resected.
- \succ Surgical resection may not be viable due to the proximity of the lesion to regions associated with vital functions or comorbidities; up to 40% of cases with high-grade brain cancers have been reported to be unresectable.
- \succ Further, brain biopsies have been reported to be unviable, inconclusive, or nondiagnostic in up to 20% of cases.
- \succ Finally, about 70% of all brain tumors are eventually diagnosed as non-malignant (benign).
- > Accurate diagnosis plays a critical role in the effective management of glial malignancies.
- \succ However, obtaining tissue specimens for histopathologic investigation carries inherent procedural risks.


CONTACT

Dr. Sewanti Limaye, MD, Sir H. N. Reliance Foundation Hospital, Mumbai, India <u>sewanti@yahoo.com</u>

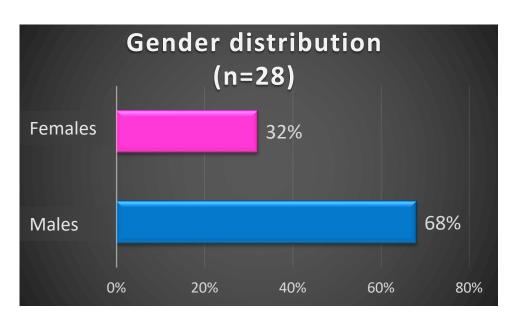
cells.

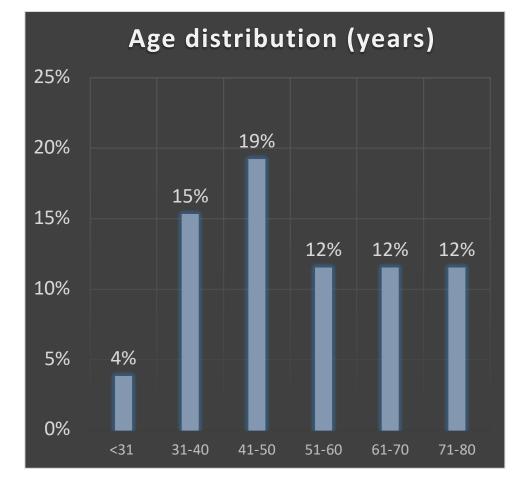
- before the invasive biopsy.
- analysis using FISH.
- circulating glial cell population.

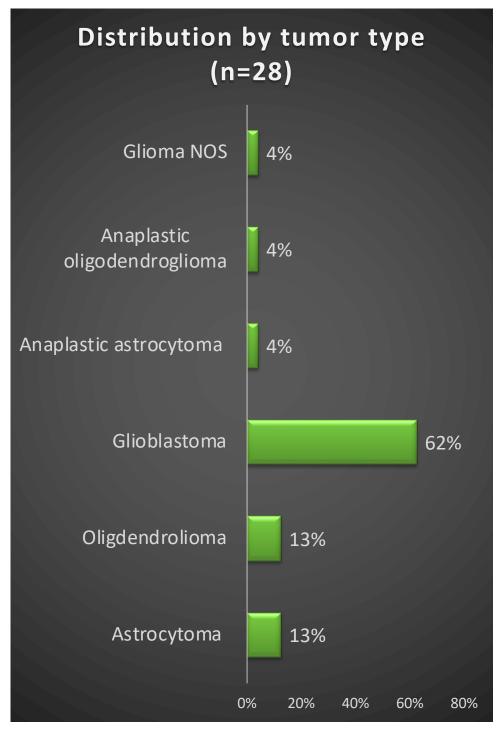
OBJECTIVES

 \succ We present profiling of circulating glial cells (CGCs) by analysing cell lineage-specific markers using immunocytochemistry (ICC) to aid in the non-invasive diagnosis of glial malignancies. We demonstrate the feasibility of EGFR fluorescence in situ hybridization (FISH) on the circulating glial

METHODS


 \succ In a prospective blinded study, blood specimens from patients suspected of intracranial spaceoccupying lesions (ICSOL) (n=28) were collected


> CGCs were enriched with the proprietary labelfree, size-independent, non-mechanical method and were profiled using the TriNetra™ Glio assay that detects CGCs using ICC profiling of cell lineage-specific markers (GFAP and OLIG2).


 \succ CGCs were also used for EGFR copy number gain

 \succ In a separate cohort comprising matched tissue and blood specimens from 44 cases (22 benign and malignant cases each), CGC profiling with ICC and EGFR FISH was performed to evaluate the concordance of profiled biomarkers on the

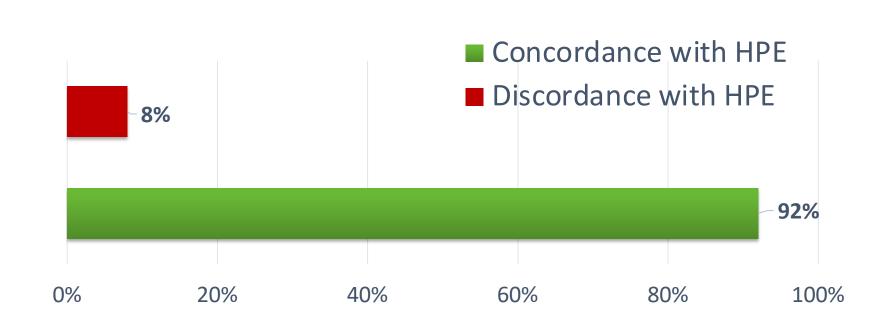
STUDY POPULATION

- 50%).

- specificity.

RESULTS

➤ TriNetra™ Glio assay successfully found CGCs in 23 out of 25 (92%) cases diagnosed with Glial malignancies.


 \succ EGFR amplification was found in approximately one-third of glioblastoma cases (4/11; 40%) and one-half of astrocytoma Grade 3 cases (1/2;

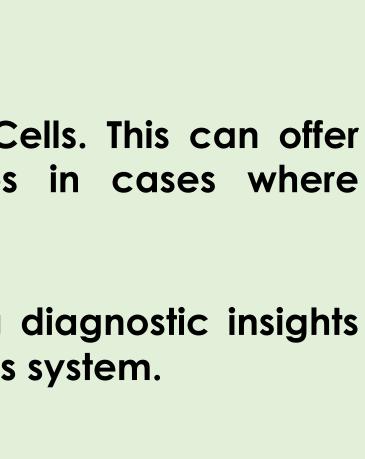
 \succ In a matched cohort, EGFR copy gain was detected in tumor tissue in 8 (36%) among 22 cases of malignant glial tumors, and EGFR gain was also detectable in corresponding blood analysis, indicating 100% concordance

 \succ Among the remaining 14 samples with normal EGFR tissue status according to FISH, the CGCs also exhibited normal EGFR status.

 \succ Further, among the 22 cases of benign tumors, there were no instances of EGFR copy gain detected by FISH on tumor tissue. All 22 samples were also negative for CGCs indicating high

CONCORDANCE FOR DIAGNOSIS OF GLIAL MALIGNANCY BY TRINETRATM GLIO ASSAY vs **HISTOPATHOLOGY (HPE)**

CONCORDANCE FOR EGFR COPY NUMBER STATUS BY TISSUE vs CGC FISH ANALYSIS


CNS tumor type (n=44)	EGFR copy number gain	
	Tissue	CGCs
Malignant (n=22)	8/22 (36%)	8/22 (36%)
Benign (n=22)	0/22 (0%)	0/22 (0%)

CONCLUSIONS

> We demonstrate a reliable method for detecting Circulating Glial Cells. This can offer valuable insights into diagnosis of suspected glial malignancies in cases where performing a biopsy is not possible.

 \succ Furthermore, FISH analysis of CGCs shows the potential in providing diagnostic insights that align with the current WHO classification system for central nervous system.

DATAR **CANCER GENETICS** United Kingdom | United States | Germany | India

