<u>Clinical evaluation of a CE-IVD liquid biopsy pan cancer genomic profiling test</u>

T. Crook¹, M. Agarwal², J. Wadhwa³, N. Shrivastava⁴, S. Apurwa⁴, H. Darokar⁴, R. Datar⁵, D. Akolkar⁴, S. Schuster⁶, A. Gaya⁷, V. Datta⁴, D.S. Patil⁸, A. Saha⁴, S. Sahni⁹, S. Limaye¹⁰

¹Oncology Department, Cromwell Hospital, London, UK, ²Medical Oncology, Datar Cancer Genetics, Nashik, India, ³Medical Oncology, Datar Cancer Genetics, Nashik, India, ³Medical Oncology, Datar Cancer Genetics, Nashik, India, ⁴Molecular Oncology, Datar Cancer Genetics, GmbH, Eckersdorf, Germany, ⁷Radiotherapy, The Cromwell Hospital, London, UK, ⁸Molecular Oncology, Indraprastha Apollo Hospital, New Delhi, India, ¹⁰Medical Oncology, Sir H.N. Reliance Foundation Hospital, Mumbai, India

INTRODUCTION

- delivery of > Essential the successful personalized cancer therapy is non-invasive diagnostic tests that comprehensively characterize the genomic signatures occurring within individual tumours
- \succ In this study, we report clinical evaluation of a circulating cell-free total nucleic acid (cfTNA)based pan-cancer NGS (Next Generation Sequencing) genomic profiling liquid biopsy (LB) test, that identified genomic signatures across solid organ cancers

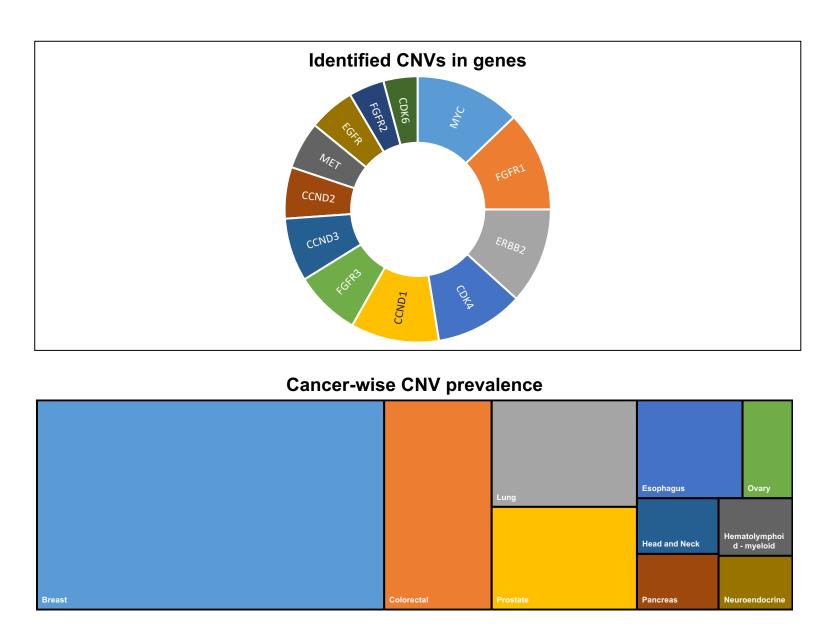
METHODS

- \geq 3630 samples belonging to 44 solid organ cancers from Asian and Caucasian origin were used in this clinical evaluation.
- \succ Total cell-free total nucleic acid (cfTNA) was isolated from blood plasma. ~15-25 ng cfTNA underwent Pan Cancer library preparation using Oncomine Pan-Cancer Cell-Free Assay (Thermofisher Scientific, Waltham, MA, USA) followed by template preparation and sequencing using Ion Proton / Gene Studio S5 semiconductor sequencer (Thermofisher Scientific, Waltham, MA, USA).
- > Data was analysed with in-house proprietary bioinformatics pipeline to detect SNV, CNV and gene-fusions.

CONTACT

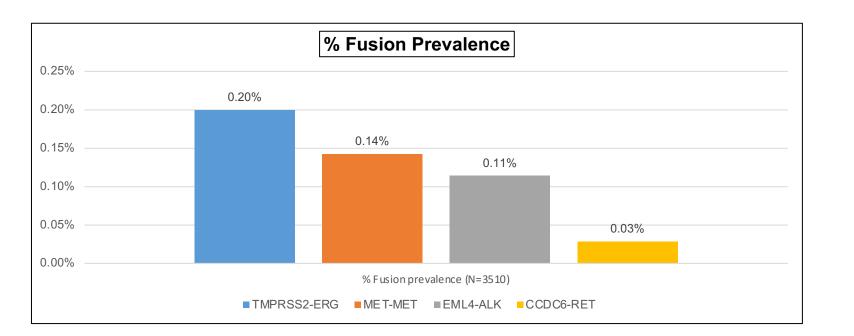
Datar Cancer Genetics Dr. Atreyee Saha atreyee.saha@datarpgx.com

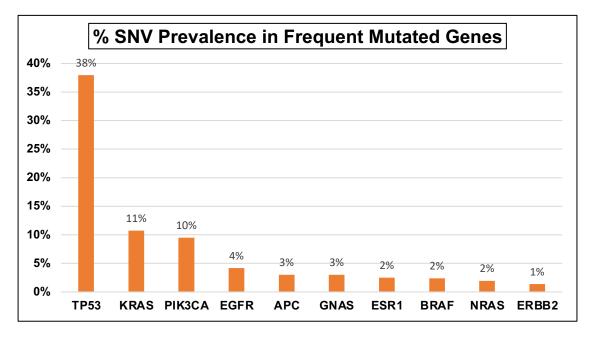
MADRID SPAIN 20-24 OCTOBER 2023

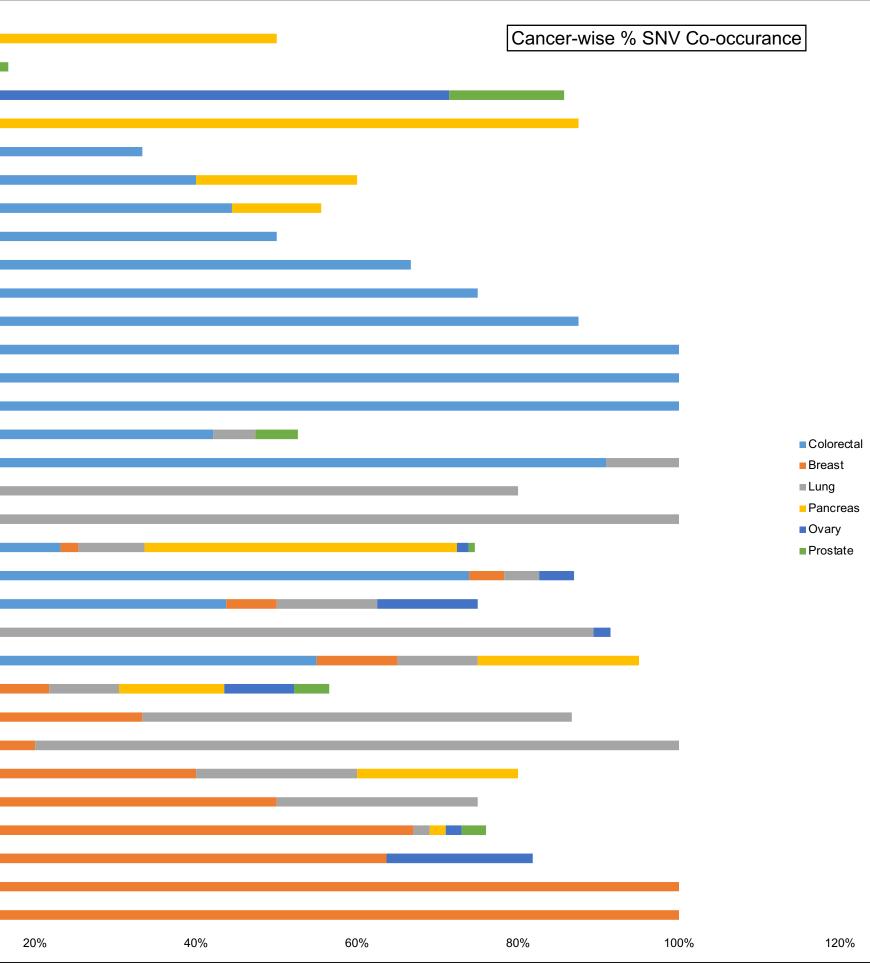

<u>SNV</u>

- \succ A total of 5960 SNVs were detected. The gene harbouring the highest number of SNVs was TP53 (38%), followed by KRAS (11%) and PIK3CA (10%).
- \succ The highest number of SNVs were detected in Breast, Colorectal, Lung, Pancreas, Prostate.

GNAS; KRAS; TP53	
HRAS; TP53	
CTNNB1; TP53	
GNAS; KRAS	
FBXW7; TP53	
KRAS; SMAD4; TP53	
KRAS; PIK3CA	
BRAF; PIK3CA	
FBXW7; KRAS; TP53	
KRAS; SMAD4	
APC; KRAS	
FBXW7; MAP2K1; TP53	
APC; KRAS; PIK3CA	
APC; KRAS; PIK3CA; TP53	
NRAS; TP53	
APC; KRAS; TP53	
KIT; TP53	
EGFR; GNAS; TP53	
KRAS; TP53	
APC; TP53	
BRAF; TP53	
EGFR; TP53	
KRAS; PIK3CA; TP53	
GNAS; TP53	
ERBB2; TP53	
EGFR; PIK3CA	
GNAS; PIK3CA	
SF3B1; TP53	
PIK3CA; TP53	
ESR1; TP53	
ESR1; PIK3CA; TP53	
ESR1; PIK3CA	
	%

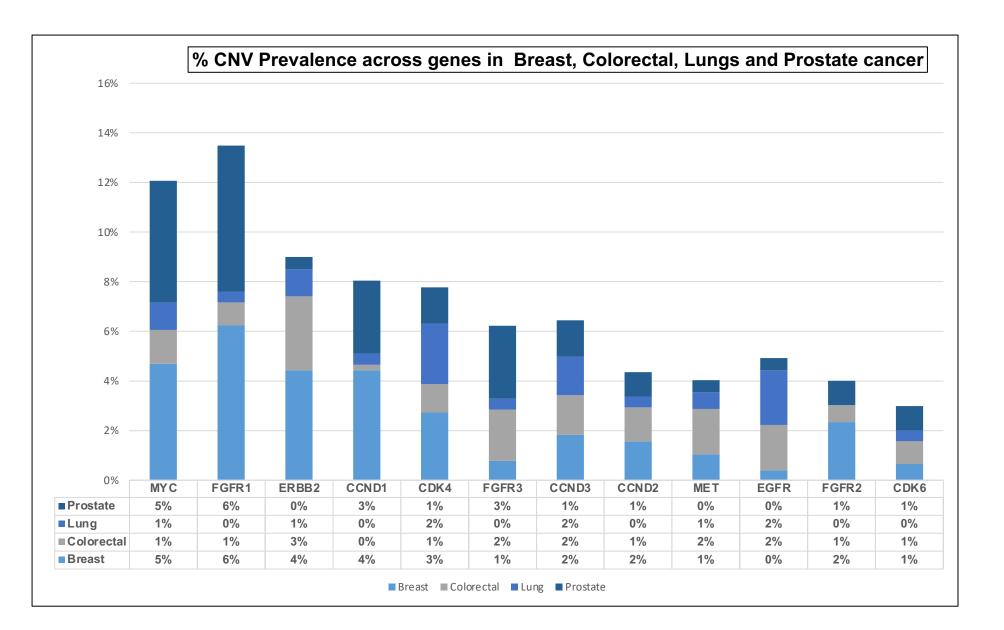

RESULTS


<u>CNV</u>



Gene-fusion

Gene fusions were detected in 0.4% patients, major fusions partners remained TMPRSS2-ERG, EML4-ALK, CCDC6-RET



> Majority of the CNVs were found in MYC, FGFR1, ERBB2, CDK4, CCND1, FGFR3 genes, mainly belonging to the Breast, Colorectal, Lung and Prostate cancer patients.

The graph above demonstrates the detection of CNV in the recurrently mutated genes across cancer types.

CONCLUSIONS

This proof-of-concept clinical evaluation of pan-cancer liquid biopsy test successfully identified low frequency genomic variations viz SNV, CNV, gene fusion signatures from cfTNA, across different solid organ cancers, belonging to varying ethnicity. This study demonstrates potential for liquid biopsy genomic profiling of solid organ cancers at diagnosis or for patient monitoring/ therapy management, post treatment.

